Table of Knot Mosaics - Crossing number 10 or less


The mosaics in this table are color coded with the following key (t = tile number, tm = minimal mosaic tile number):

  • Mosaic number 5:    dark blue background : t = 17;
  • Mosaic number 6:    light green background : t = 22;    dark green background : t = 24;    yellow background : t = 27;    red background : tm = 32*;
  • Mosaic number 7:    purple background : t = 27;    light blue background : t = 29;    gray background : t = 31

* Note: Prime knots that require 32 non-blank tiles to fit on a 6-mosaic (i.e. tm = 32) may have tile number less than 32 that can only be achieved on a 7-mosaic. All given mosaics have mosaic number realized. Click "more" to see mosaics with tile number or crossing number realized.


Click mosaic for larger view.


Image

01

Image

31

Image
41
Image
51
Image
52
Image
61 (more)
Image
62
Image
63
Image
71
Image
72
Image
73  (more)
Image
74
Image
75
Image
76
Image
77
Image
81  (more)
Image
82
Image
83  (more)
Image
84
Image
85
Image
86  (more)
Image
87  (more)
Image
88  (more)
Image
89  (more)
Image
810
Image
811
Image
812
Image
813
Image
814
Image
815
Image
816
Image
817
Image
818
Image
819
Image
820
Image
821
Image
91
Image
92
Image
93  (more)
Image
94  (more)
Image
95
Image
96
Image
97 (more)
Image
98
Image
99 (more)
Image
910 (more)
Image
911
Image
912 (more)
Image
913 (more)
Image
914
Image
915 (more)
Image
916 (more)
Image
917
Image
918
Image
919 (more)
Image
920
Image
921 (more)
Image
922
Image
923
Image
924 (more)
Image
925
Image
926 (more)
Image
927
Image
928
Image
929 (more)
Image
930
Image
931
Image
932
Image
933
Image
934
Image
935 (more)
Image
936
Image
937 (more)
Image
938
Image
939
Image
940
Image
941
Image
942
Image
943
Image
944
Image
945
Image
946 (more)
Image
947
Image
948 (more)
Image
949
Image
101 (more)
Image
102
Image
103 (more)
Image
104
Image
105 (more)
Image
106 (more)
Image
107 (more)
Image
108
Image
109 (more)
Image
1010
Image
1011 (more)
Image
1012 (more)
Image
1013 (more)
Image
1014 (more)
Image
1015 (more)
Image
1016 (more)
Image
1017 (more)
Image
1018 (more)
Image
1019
Image
1020 (more)
Image
1021 (more)
Image
1022 (more)
Image
1023
Image
1024 (more)
Image
1025
Image
1026
Image
1027
Image
1028
Image
1029
Image
1030
Image
1031 (more)
Image
1032
Image
1033 (more)
Image
1034 (more)
Image
1035 (more)
Image
1036 (more)
Image
1037 (more)
Image
1038 (more)
Image
1039 (more)
Image
1040
Image
1041
Image
1042
Image
1043
Image
1044
Image
1045
Image
1046
Image
1047
Image
1048 (more)
Image
1049
Image
1050 (more)
Image
1051 (more)
Image
1052
Image
1053
Image
1054
Image
1055
Image
1056 (more)
Image
1057
Image
1058
Image
1059
Image
1060
Image
1061 (more)
Image
1062 (more)
Image
1063 (more)
Image
1064 (more)
Image
1065 (more)
Image
1066
Image
1067 (more)
Image
1068 (more)
Image
1069
Image
1070 (more)
Image
1071
Image
1072 (more)
Image
1073
Image
1074 (more)
Image
1075
Image
1076 (more)
Image
1077 (more)
Image
1078 (more)
Image
1079 (more)
Image
1080
Image
1081
Image
1082
Image
1083
Image
1084 (more)
Image
1085
Image
1086
Image
1087
Image
1088
Image
1089
Image
1090 (more)
Image
1091 (more)
Image
1092 (more)
Image
1093 (more)
Image
1094
Image
1095
Image
1096
Image
1097
Image
1098
Image
1099
Image
10100
Image
10101
Image
10102
Image
10103 (more)
Image
10104
Image
10105
Image
10106
Image
10107
Image
10108
Image
10109
Image
10110
Image
10111
Image
10112
Image
10113
Image
10114 (more)
Image
10115
Image
10116
Image
10117
Image
10118
Image
10119
Image
10120
Image
10121
Image
10122
Image
10123
Image
10124
Image
10125
Image
10126
Image
10127
Image
10128
Image
10129
Image
10130
Image
10131
Image
10132
Image
10133
Image
10134
Image
10135
Image
10136
Image
10137
Image
10138
Image
10139 (more)
Image
10140 (more)
Image
10141
Image
10142 (more)
Image
10143
Image
10144 (more)
Image
10145
Image
10146
Image
10147
Image
10148
Image
10149
Image
10150
Image
10151
Image
10152 (more)
Image
10153 (more)

 

Image
10154
Image
10155
Image
10156
Image
10157
Image
10158 (more)
Image
10159
Image
10160
Image
10161*
Image
10162*
Image
10163* (more)
Image
10164*
Image
10165*
*These knots are listed as 10162‑10166 in Rolfsen due to the Perko Pair.        

[Back to Top]


References:

Heap, A.; Knowles, D. Tile Number and Space-Efficient Knot Mosaics; J. Knot Theory Ramif. 2018, 27.
Heap, A.; Knowles, D. Space-Efficient Knot Mosaics for Prime Knots with Mosaic Number 6; Involve 2019, 12.
Heap, A.; LaCourt, N. Space-Efficient Prime Knot 7-Mosaics; Symmetry 2020, 12.
Heap, A.; Baldwin, D.; Canning, J.; Vinal, G. Tabulating Knot Mosaics: Crossing Number 10 or Less; in preparation.
Kuriya, T.; Shehab, O. The Lomonaco–Kauffman Conjecture; J. Knot Theory Ramif. 2014, 23.
Lee, H.; Ludwig, L.; Paat, J.; Peiffer, A. Knot Mosaic Tabulation; Involve 2018, 11.
Lomonaco, S.J.; Kauffman, L.H. Quantum Knots and Mosaics; Quantum Inf. Process. 2008, 7, 85–115.
Ludwig, L.; Evans, E. An Infinite Family of Knots Whose Mosaic Number Is Realized in Non-reduce Projections; J. Knot Theory Ramif. 2013, 22.
Rolfsen, D. Knots and Links; Publish or Perish Press: Berkeley, CA, USA, 1976.